KAKEYA SETS OVER NON‐ARCHIMEDEAN LOCAL RINGS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kakeya-Type Sets in Local Fields with Finite Residue Field

We present a construction of a measure-zero Kakeya-type set in a finite-dimensional space K over a local field with finite residue field. The construction is an adaptation of the ideas appearing in [12] and [13]. The existence of measure-zero Kakeya-type sets over discrete valuation rings is also discussed, giving an alternative construction to the one presented in [4] over Fq[[t]].

متن کامل

Kakeya sets of curves

In this paper we investigate an analogue for curves of the famous Kakeya conjecture about straight lines. The simplest version of the latter asks whether a set in R that includes a unit line segment in every direction must necessarily have dimension n. The analogue we have in mind replaces the line segments by curved arcs from a specified family. (This is a quite different problem from that con...

متن کامل

Orthogonal Groups over Local Rings

In an earlier paper [S] we have determined the structure of the linear groups over a local ring. In this note we continue the study of the classical groups over a local ring with the investigation of the orthogonal groups. Our main result (cf. Theorem 6 below) is a complete description of the invariant subgroups of an orthogonal group of noncompact type (i.e., of index ^ 1) over a local ring L ...

متن کامل

Kakeya Sets in Cantor Directions

In this paper, we prove the following.

متن کامل

Diophantine Sets over Algebraic Integer Rings . Ii

We prove that Z is diophantine over the ring of algebraic integers in any totally real number field or quadratic extension of a totally real number field.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematika

سال: 2013

ISSN: 0025-5793,2041-7942

DOI: 10.1112/s002557931300003x